AD=A117 067

UNCLASSIFIED

BROWN UNIV PROVIDENCE RI LEFSCHETZ CENTER FOR DYNAMI==ETC F/6 12/1

A LIAPUNOV FUNCTIONAL FOR LINEAR VOLTERRA INTEGRODIFFERENTIAL E~=ETC(U)
JAN 82 D L ABRAHAMSON: E F INFANTE AFOSR=81~0198
LCDS=-82=7 AFOSR=TR=82~0535 NL




AFOSR-TR- 8§2-05395

AD A117067

ELECTE
. . JUL19 1882 °

Lefschetz Center for Dynamical Systems

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

Division ot Applied Mathematics Brown University Providence RI 02912




a4 a1 g A 0

o UNCLASSIFIED A ? A
- SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered). *
: ' READ INSTRUC TIStige® '
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVY ACCESSION NO.| ). RECIPIENT'S CATALOG NUMBER
| AFOSR-TR- §2-05388 |o-4ur067 1
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED 4

A LIAPUNOV FUNCTIONAL FOR LINEAR VOLTERRA TECHNICAL }

INTEGRODIFFERENTIAL EQUATIONS

6. PERFORMING O3G. REPORT NUMBER

L

LCDS 82-.7 4

7. AUTHOR(Ss) 8. CONTRAZY OR GRANT NUMBERTs)

D.L. Abrahamson and E.F. Infante AFOSR-81-0198
A

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::giﬂAm EaLEMENTT. PROJ ERCT, TASK
Lefschetz Center for Dynamical Systems & WORK UNIT NUMBERS
Division of Applied Mathematics PE61102F; 2304/A4
Brown University, Providence RI 02912 - -

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE ’ :
Mathematical & Information Sciences Directorate |JAN 82 j
Air Force Office of Scientific Research 13 NUMBER OF PAGES -

Bolling AFB DC 20332 21 .

14, MONITORING AGENCY NAME & ADDRESS(if dillerent from Controlling Olfice) 15. SECURITY CLASS. (of thus report®

UNCLASSIFIED
1Sa. DECLASSIFICATION DOWNGRADING —
SCHEDULE N

\ R

. 16. DISTRIBUTION STATEMENT (of this Repori) DT"‘C——
Approved for public release; distribution unlimited. ELECTE f
N JUL19 1882 :

17. DISTRIBUTION STATEMENT (of the abstract entered in Bilock 20, if different trom Report)
- B -
. . PR .l;‘
H ' = E’
i ¥
—
, 18, SUPPLEMENTARY NOTES ': '
k.
.
f
' 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) ..
. ,
-
i 20. ABSTRACT (Continue on reverse side Il necessary and identily by block number) “
Liapunov functionals of quadratic form have been used extensively :
Jfor the study of the stability properties of linear ordinary, functional -
] 4 : -’ ‘
i and partial differential equations. In this paper, a quadratic functional V 5‘
Rt
H is constructed for the linear Volterra integrodifferential equation .
i (CONTINUED) !
DD ,"3%%, 1473  eoimion oF 1 nov 6813 oBsOLETE ;
JAN 73
UNCLASSIFIED :
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) S
T AN ARG T R T L AT, Y 6 R it T B R ol W R e I i R e fale e -~ g ; '
- p s -~ »\"; . MRS X m‘.: e Y s e i - on el W 3 . i gt I
P e s L e M e, fx R SR e T s Sl ol e ST e Wi v

R e e v -
iy 2 T as e .o PRI T e

AR



e~ e . T TR - — ‘ T
* ‘. . v -
P, - .
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) . ”

ITEM #20, CONTINUED:

. t
x(t) = Ax(t) I B(t-T)x(DdT , t 2 ¢, ,
0

x(t) = £(t), 0<t<t

-> b ..

0"
L4

This functional, and its derivative V, is more general than previously

constructed ones and still retains desirable computational qualities; moreover,

it rcpresents a natural generalization of the Liapunov function for ordinary

differential equations. The method of construction used suggests functionals

which are useful for more general equations.

.

:@ b-... et gtutenngl S 2ok . Mtem

n

Accession FO}‘_’#__
NTIS GRAKI
DTIC TAB g

Unannounced O
Justification —————

By
pistribution/
Availabili_ty_ Codes
" " lAvail and/or
Dist Special

7

UNCLASSIFIED
SECURITY CLASSIFICATION OF Tt BPAGE(Whon Date Entered)

T TR TN AT IR W 2 T TR T e ML T

=

Coudl W BT T

Lo e Ceas

PRy

ceated e - o _ N

U LW

T N

i

fehaa s e




W 7

A LIAPUNOV FUNCTIONAL FOR LINEAR VOLTERRA

INTEGRODIFFERENTIAL EQUATIONS

b 3

¢ 2

D.L. Abrahamson and E.F. Infante ;

‘ .
January 1982 LCDS Report #82-7 g

. 8

£

1

DTIC

ELECTE
JUL19 1982 .

B ‘i

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC

NOTICE OF TRANSMITTAL TO DTIC i
This technical report has been reviewad and is

approved for puhlic release IAWAFR 130-12. ; :
Distribution isunlimited. S

STRIBUTION STATEMENT A MATTHEN J. KERPER
' - ed for public releasei Chief, Technieal Information Division :
oV c ¥
Am:.Distﬂb\nicm Unlimited




A LIAPUNOV FUNCTIONAL FOR

LINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATIONS

3 - .
ik a7 Nedadin

D. L. Abrahamson *
Lefschetz Center for Dynamical Systems .
Division of Applied Mathematics 2
Brown University
Providence, Rhode Island 02912

E:
and

E. F. Infante **
Division of Mathematical and Computer Sciences
National Science Foundation
Washington, DC

and

Lefschetz Center for Dynamical Systems
Division of Applied Mathematics
Brown University
Providence, Rhode Island 02912

January, 1982

* This research was partially supported by the Air Force Office of Scientific
Research under contract no. @-AFOSR 81-0198.

** This research was partially supported by the National Science Foundation under
contract no. MCS-79-05774-02.

w2




o

A LIAPUNOV FUNCTIONAL FOR

LINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATIONS

* D.L.Abrahamson and E.F. Infante
¢
]
.‘
ABSTRACT :
) k
Liapunov functionals of quadratic form have been used extensively ?
o

for the study of the stability properties of linear ordinary, functional
and partial differential equations. In this paper, a quadratic functional V
is constructed for the linear Volterra integrodifferential equation .

) t

x(t) = Ax(t) + JO B(t-T)x(T)dT , t > ¢t , i
x(t) = f(t), 0 <t <t . :

0
L d
This functional, and its derivative V, is more general than previously
I
constructed ones and still retains desirable computational qualities; moreover,

it rcpresents a natural generalization of the Liapunov function for ordinary

differential equations. The method of construction used suggests functionals

which are useful for more general equations.
N




1. Introduction

; For ordinary differential equations of the form i(t)=Ax(t), x(t) € R"
E it is well known that stability, perturbation and asymptotic properties can
b be obtained through the use of Liapunov functionals of the form V=xTMx.

J Indeed, if A 1is asymptotically stable a positive definite symmetric matrix
M can be obtained as the solution of the Liapunov algebraic equation ;
ATM + MA = -W for any positive definite matrix W; moreover, one has the

P
familiar result that M = JO eATSWeASds and that V = -xTWx. Since V J

and V are quadratic forms, it is easy to obtain an estimate of the type

Q(t).j -28v(t) for some positive number & and therefore to obtain a q

decay estimate via the Gronwall inequality. It is well known that this

estimate can be made arbitrarily close to the best possible estimate; further-
more, V1/2 is a norm equivalent to the Euclidian norm in R". The simplicity,
computability and sharpness of these results are central to a number of useful
techniques in asymptotic and perturbation analysis of ordinary differential
equations,

In this paper we present a quadratic Liapunov functional for a linear
Volterra integrodifferential equation. Because the function space involved
is not IRn, it is not clear what quadratic functionals should be chosen that
will lead to sharp results yet remain easily computable. We follow the methodology
suggested by the ordinary differential equation case and choose what seems an
appropriate quadratic form V for the functional. Computation of the rate of
change of the functional along the solutions of the equation yields another

functional V; for the sake of computability and comparability, conditions are

. imposed on V, which are then reflected in the form V. In the course of this




analysis an auxiliary equation, the natural generalization of the Liapunov
algebraic equation, arises and is analyzed. The end result is a theorem that
states the existence of Liapunov functionals of the desired form which give sharp

estimates of decay rates.

We consider the equation

t
(1.1) X(t) = A(E)x(t) + f K(t,T)x(T)dT, t > t
0

with x(t) = f(t) for f € C[O,to]. Miller [1] and others have shown the

02 0. x(t)E€ R"

desirability and usefulness of considering such equations with to > 0. Denoting
by x(-,to,f) the solution of this equation with initial data f € C[O,to], we

say th~t the equation is stable if for every t, >0 and € > 0 there exists

0
a 6= G(to,e) > 0 such that |[f(t)| <8, 0 <t < t,» implies lx(t,to,f)l < €
for t > to; the equation is said to be uniformly stable if it is stable and
8§ = 6(€) can be chosen independent of to > 0.

For the simpler equation

t
(1.2) x(t) = Ax(t) + f B(t-T)x(T)dT, t > ¢t
0

where A 1is a constant matrix and the convolution kernel B 1is integrable,

020, x(t) € R,

characterizations of stability properties have been obtained by Miller [1] and
Grossman and Miller [2]. Seifert [3,4] and Grimmer and Seifert [5] have studied
this equation through the use of the very simple quadratic Liapunov functional
xTJx, under the assumption that A is asymptotically stable and that ATJ+JA

is negative definite. Burton [6,7] has studied equations (1.1) and (1.2) using
more general functionals, generally not quadratic ones, functionals which include

the history of the solution. The construction of quadratic Liapunov functionals

for linear problems in Hilbert spaces has been pursucd extensively by Infante




and others [8,9,10,11]. This latter approach has motivated this investigation;

indeed the results here generalize those in [9]. In Section 2 we construct a
quadractic Liapunov functional for equation (1.2); in Section 3 we exhibit a
functional which is useful for the study of equation (1.1) and present an example

of its use.

We wish to thank our colleague Professor John Mallet-Paret for some very

useful suggestions which have been incorporated in this paper.

iiCmni
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2. Equations with Kernels of Convolution Type

Consider the equation

t
(2.1) x(t) = Ax(t) + f B(t-T)x(T)dT, t > t_> 0, x(t) € R",
0

0
where A and B are nx n matrices with A constant and B locally integrable.

For each t > t, we consider the pair (xt(O),xt) € K x L,[-t,0], where

0
xt(e) = x(t+6) for -t < 0 < 0. Associated with this equation is the equation
. (t s(t-1)
(2.2) y(t) = (A+8D)y(t) + J e B(t-U)y(t )dT, t > ty > 0,
0 z ke

where & €R, which is obtained from (2.1) through the change of variables
y(t) = etx(e).

In the sequel, we shall use a representation of the solutions of (2.1)
similar to those given by Miller [12] and Hale [13]. Let S be the solution

of the matrix initial value problem

t
(2.3) S(t) = S(t)A + f S(t-T)B(T)dT , t > 0
0 i
S(0) = I, . ’

and let S(©)=0 for 6 < 0. Then we have

Lemma 2.1. Suppose x(t) is a solution of (2.1) for t > to. Then if
t > tO and p> 0

0 oo
(2.4) Xerp(0) = S(P)x,(0) + f tj(;(p-v—e)B(v)xt(G)dvde .

The matrix function Sé(t) = thS(t) is, of course, related to equation (2.2).

The cuadratic forms to be used as candidates for Liapunov functionals

for equation (2.1) are of the type
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0
V(t,x (0),x,) = x; (0)Lx, (0) + f_t xI(O)H(O)xt(S)dG
(2.5)

T 0 00 ¢
. 2xt(0)j N@)x, (8)d0 + J J x, ()P (B, m)x, (M)dnde ,
-t -t -t

where L and H(8), -t <9 < 0, are symmetric positive definite matrices
and P(6,n) = PT(n,e) for -t E.G,W < 0 . This quadratic form is natural for

our equation. The rate of change of V along the solutions of (2.1) for t > t

0
can be obtained, after a lengthy but straightforward computation, as
"/ T T T
(t,xt(O),xt) = xt(O)[A L + LA + H(0) + N(0) + N (0)] xt(O)
0 7
- f xt(e)H (e)xt(e)de
-t
T 0 T,
(2.6) + 200 [IBCm + AT - N () + PO,k (dn
-t
0 (0
[ [ HeuTeonm « wepen - B B gy (ryan.
-t‘-t n

This quadratic form is of the same type as (2.5). Unfortunately, at this level of

generality it is difficult, if not impossible, to obtain simple computable inequalities

between V and V.

In [3,4,5,6,7] this difficulty has led one to choose all or several of the
matrix functions H, N and P to be identically zero, yielding rather restrictive
results. The analogy to the case of the simple ordinary differential equation

x = Ax with Liapunov functional V = xTJx is to pick a particularly simple form

J JT, say diagonal, and to insist that the form E = -(ATJ + JA) be positive

definite. It is well known that, in general, the stability results thus obtained
for the solutions of the differential equation will be most restrictive. Our
viewpoint is the opposite one. We choose a particularly simple form for the

matrix E and thus obtain the matrix J. This is nreciscly the viewpoint




successfully employed in [9], and which we follow here. More specifically, we

endeavor to obtain a relationship between V and ; of the simple form
L 4
vV < -kV.

In the ordinary differential equation case, our viewpoint leads to an
analysis of the matrix equation ATs + Ja = -E. It is well known that if A
is asymptotically stable, for any svmmetric E this equation has a unique
symmetric solution J and that the mapping E - J maps positive definite
symmetric matrices into (but not onto) positive definite symmetric matrices.
The following analyvsis is a generalization of this well known result to the

problem at hand.

Lemma 2.2. The matrix problem

2.7 Q@) = Q' (-a),

Q' (@) = CQ(&) + f” D(R)Q-B)dR , & > 0
0
a € R
T ® T T
cQ(0) + Qeo)cT + f 0(8)Q"(8) + Q& (B4 = X,
0

where C 1is a constant matrix, X a symmetric constant matrix and D(-)eY €

Ll(O,m) n LZ(O,m) for some Y > 0, has no more than one exponentially decaying

solution.

Proof: It suffices to prove that if X=0 (2.7) has no nontrivial exponentially
-V
decaying solutions. Suppose that Q is a solution with [Q(a)| < ke o]

for some k,v > 0. Define Q(s) = fmefsaQ(a)da . Then Q 1is analytic in s

-0

in the strip |Re s| < v. Define H(a) for O €ER by

[+ o}

(2.8) H(x) = Q'(0) - CQ(») - J D(B)Q(xr-B)dB ;
0

it follows that H(a) = 0 for & > 0 and that
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o0

H@) = -CQ@) - Q@)C! - f D(R)Q(s-£)dB
0

- j Q+g)D (B)dE , a < 0.
0

Extend the matrix function D bv D(R) = 0 for £ < .0 and define H(s)

and D(s) analogously to the definition of Q(s). It is easily seen that H
is anaiytic and bounded in an open half-planc containing {s|Re s < 0} and that

D is analytic and bounded in an open half-plane containing {ise s > 0} . From

(2.8) it follows that there is a strip about the imaginary axis in which
(2.9) H(s) = a(s)Q(s), A(s) = sl - C - D(s) ,

and since é(s) = aT(—s) it follows that ﬁ(s)LT(-s) = A(S)QT(-S) in this strip.
Consider the function F(s) = ﬁ(s)AT(-s), which is analytic in an open half plane
containing {s [Res 5_0 }; the relation F(s) = FT(—s) shows tl. t F 1s an

entire function. Moreover, it is easily seen that there exist positive constants

< and ¢, such that [F(s)] < c * cﬁls} for all s € €. By a familiar exten-

sion of Liouville's Theorem it follows that F(s) = F1 + st for some complex
matrices F1 and F2. Hence, H(s) = (F1 + sFZ)(—sI - CT

Re s < 0. From (2.7) and (2.9) it follows that H'(®) exists and decays exponen-

- [';T(-s))_1 for

tially. Since 1lim s H(s) = H(0) and since X=0 1implies H(0)=0, it follows
Re s+ -o 4 ~
that F_=F_=0. Thus H(s) vanishes identically, which implies that Q(s) and

1°2
Q(®) must be zero, proving the lemma.

Let us now return to the construction of the Liapunov functional for
equation (2.1). For this purpose, assume that for the given A, B and ¢

equation (2.2) is uniformly stable and that the kernel B(-)ed. € Ll(O,m)fT LZ(O,“).

Let € > 0, and consider the problem, obviously related to equation (2.7), of finding
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PO

a function Q within the class of exponentially decaying matrices defined by

Q@) = [AT + (8-€)1]Q(®) + fo e(O-*)BT (8)q(u-8)de, a > 0

(2.10) Q@) = Q'(-a), wae€R

L(8-6)8

ATQ(O) + Qo)A + JO [BT(B)QT(B)+Q(B)B(B)]dB = W

b am e .

for some fixed but arbitrary positive definite matrix W, to be selected in the

sequel. Lemma 2.2 above guarantees that, among exponentially decaying matrices,

there is at most one Q satisfying this equation. With Sd-e(t) = e(5_€)t5(t),
where S is the solution of equation (2.3}, it is easily checked that

[+ o4
(2.11) Q) = f SL {u +0)WS g (u)du, o€ R,

0

yields a solution of (2.10), hence the unique exponentially decaying solution of
this equation. It is this matrix function @ that allows us to construct a simple
Liapunov functional of the form (2.5). Indeed, in that equation, let the matrices

L, H(8), N(®) and P(8,n) be defined by

(2.12) L = Q0) + M,

(2.13) Hg) = R e2(8°€)8

(2.14) N(8) = I;De(é_e)(V+6)Q(V+O)B(v)dv,

(2.15) P@,n) = [: fw (8- (m 9 +usVIgT 30 (16 +u-v)B(u)dudv, q
-n

where the positive semidefinite matrices M and R will be chosen later. A

lengthy computation yields that, with these matrices, equation (2.6) reduces to

(2.16) V(t,x, (0),x) = -2(8-e)V(t,x,(0),x,)

£ XpO[-W + R+ (AT + (6-0)1IM « M(A+(8-)1)]x, (0) -

T, {0
+2 xt(O)J MB(-6)x, (6)d6 . .
-t

it

TS e it QAL Wi oy A
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Moreover, it is possible to expose the structure of the functional V under
these conditions. Substitution of equation (2.11) into equations (2.12)-(2.15)

shows, after some appropriate rearrangements, that the functional V is of the

form
T o 1 2(8-€)0
(2.17) V(t,xt(O),xt) = xt(O)Mxt(O) + f xt(O)th(G)e d6
-t
w 0
+J (S(p)x, (0) +f rS(o-v-e)s(v)xt(e)dvde)TWez(é'e)p
0 -t/-8
0 o
< 5@x,©@ + [ | SG-v-0Bx @)dvands
-t--H

which can be rewritten, on account of Lemma 2.1, as

2(8-€,86

0
(2.18) V(t,x,(0),x,) = X{ (O)Mx, (0) + f x(8)Rx, (®)e d
-t

. jo xg (P, (9)e? (O )Pap

Three points seem worthy of some emphasis at this point. The first is that
whereas equation (2.5) is a very general form, it is the particular restriction
of this form given by (2.11)-(2.15) that yields the simple, manageable results
expressed by equations (2.16) and (2.18). The second remark is that the simplest
computable result for (2.16) is obtained for the case § -£€ = 0, M=R=0, in which
case the sign of ; is strictly given by W; but in this case, all that one

can say is that V 1is positive and difficult to estimate. Finally, if in (2.18)
one chooses W=0 , then one recovers the commonly used functionals for this
problem, but then note that (2.16) is difficult if not impossible to estimate

appropriately unless the matrix A is asymptotically stable.

The emphasis here is to obtain estimates through appropriate use of the
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matrices W, M and R. First note that with W > 0, it follows from (2.18) that

0
_e)0
(2.19)  V(t,x,(0).x,) > x; (0)Mx, (0) + J-th(e)th(G)ez(G “Fae .

Nie e e Al e

Let now IEIM = (ETM€)1/2 for & € IRn, with the same notation for the corresponding

matrix norm, Now, let € >0 be given. Observe that

0 0 1/2
| 2x] (0) f_ra(-e)xt(e)de < 20x, (@], ( f_lxt(a)|§ e2(8-€)0 45y

Y 2
x f R(-6}|, e
Jree

[PPSR 5 S SR

-2(8-€)9 1/2

do)

S

0
-E)e 8-€)0 ;
<1 e ool @1+ 2 [ I @lf e )

| for every c¢ > 0. Hence, if we choose ¢ = €/|| IB(')e(G‘E)wlL and

2
IIB(‘)e(G-e).” L

R = - Z M, it follows from the form of (2.18) that !
€

0
T
.0 :
2|xt(6)J tMB( )xt(e)def < 2€ V(t,xt(let) .
Thus with this choice of R, and M an arbitrary positive definite matrix,

(2.16) yields

V(t,x, (0),%,) < -2(6- 2EV(t,x (0} ,x,)

+ xI(O)[-w + R+ (AT+(8-€)IIM + M(A+(6-©)1)]x_ (0) :

so that W can be chosen as a positive definite matrix to yield

(2-20) V(t,x, (0),x,) < -2(8- 2V (t,x (0),x,)




We may appeal to the definitions of Q, N, and P to show that

for some k > 0 independent of t,

0 -
(2.21) V(t,xt(O),xt)_i k(}I(O)Mxt(O) + f XI(G)th(G)eZ(G E)Gde .

Along with (2.19) this establishes just in what sense V measures the
size of the solution. For each fixed t, Vl/z(t,‘,') is equivalent

to the norm {!-||t given by
0 -
(2.22) ||(xt(0),xt)||i = % 0 + [ |xt(9)1262(6 €10 44
-t

It can be said that Vl/z(t,-,-) is equivalent to the usual norm

on R" x L2(—t,0); however, the constants describing this relationship

behave badly as t grows, whereas the constants relating Vl/z(t,-,-) to

(2.22) are independent of t. The preceeding results are summarized in

the following

. t
Theorem 2.1. Consider the equation x(t) = Ax(t) + f B(t-t)x(t)dt and the

: 0
functional V given by (2.5). Suppose that & € R 1is such that

B(:)e® € L (0,@) N Ly(0,%) and the equation ¥(t) = (A+6D)y(t)

+ IO ea(t'T)B(t-t)y(T)dt is uniformly stable. Then for any € > 0

there exist continuous matrices N, P, and H, with H positive definite,

a positive definite matrix L, and k2 Z.kl > 0 such that

Y]




1/2

(2.23) K, (|x @)% + fot[xtcen 220820 ) " ¢ VM2 x, (0),x)

1/2
< szxtw”Z . ft|xt(e)|2e2(6“€)ede)

and V < -2(8-2¢)V.
If §> 0, the problem is exponentially asymptotically stable and

-(G-Zs)(t-to)

V yields the estimate |xt(0)| < g8 for a constant o

depending on the initial data on [O,to] giving rise to x.
Remarks. The construction of a Liapunov functional for the equation
. t

(2.24) x(t) = Ax(t) + f B(t-T)x(t)dt ,

t-r

where 0 < r<w and B¢ Lz(o,r), is carried out in exactly the same

manner used above. The result is, in fact, more satisfactory. We regard

(2.24) as an autonomous evolution equation in the Hilbert space R X L2(—r,0).

If the spectrum of the generator of the appropriate semigroup lies in the
closed half-plane Re s < g2 then for any €, > 0 we can construct a

0
1/2
0

quadratic form VO on R'x Lz(-r,O) such that V is equivalent

to the usual norm and Vi < 2(§+€,)V,,.

The approach taken here may be of more general use. The linearity
and appearance of the equation under consideration suggest a quadratic
Liapunov functional. Above, the attempt to obtain a certain appearance

in its derivative required that terms in (2.5)and (2.0)be comparable.

In general, a set of equations will arise from thec comparison of V to V, and

PPV RO I

e il
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various tactics are available. For example, dropping the requirement

P(e,n) = PT(n,Q) leads to a functional which is useful for an equation
whose kernel is not of convolution type. This remark is pursued in the following

section.

3. More General Equations

. R n
We now consider the equation in IR

t
G.1) x(t) = A(t)x(t) f K(t,1)x(1)d1,
0

where A and K are continuous n x n matrices. The initial-value

problem to be considered has ty > 0 and x = f on [O,to], fe C[O,to],

with 3.1)to hold in t > t Again, for t > t, we think of (xt(o),xt)

0 0

as lying in R™x LZ(-t,O), and seek a quadratic Liapunov functional.
ﬁurton [6,7] and others [3,4,5] have studied (3.1)by picturing it as a
perturbed version of an ordinary differential equation, and we do so as
well. The theorem presented in this section is said to be a Razumikhin-
type tesult because its proof relies only on the description of certain
solutions at the times those solutions leave sets which are of interest.

Before presenting the theorem, we recall a simple fact from linear algebra
which can be found, for example, in [14]}. If D and E are real symmetric
n ¥ n matrics with E positive definite, the equation det[D-AE] = 0

has n real solutions Ai' They coincide with the eigenvalues of l.')[-:-1

and

T
A:max-z__[-).z_.

1<i<n z¥0 z Ez
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As before, for E> 0 and § € R, we write [€|E = (ETEE)I/Z, with the

same notation for the corresponding matrix norm . If G isan nXn

matrix with real eigenvalues, let Km (G) denote its largest eigenvalue.

ax

Theorem 3.1. Suppose M is a positive definite n X n matrix and

let g(t) = xmax(AT(t) + MA(t)M—l). Suppose that there exists & > 0

such that
t t

(3.2) 2 f Iu|K(u,s)|M exp J g]dsdu <1l -«
0 0 u

for all t > 0. Then

(1) (3.1)is uniformly stable if there exists N < +» such that

T
I g(1)dt <N whenever 0 <t <T <+ ;
t

T
(ii) (3.1)is stable if 1lim sup f g(DdT1 < +o0 ,
T 0

Proof. Let

n
(3.3)  V,(t,x(t),x) = x (IMx(t) - zJ‘t f X! (W)MK (u, s ) exp rg x(s)dsdu.
0’0 u

Then along solutions of (3.1)
(3.4)  Vy(6x(8),%) = x" () [AT(EM + MACE) - g(OMIX(E) + g(E)V,(t,x(2),x) .

Thus V) (t,x(t),%) < g(t)V;(t,x(t),x). So, for t> t,,

t
(3.5) Vi (e,x(t),x) < Vl(to,f(to).f)exPLog(t)dt ,
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where f is the initial data for x. If (3.1)were not uniformly

stable, we could find sequences as follows: {tk}:=1’ tk Z.O’

{£}

* oo
a1 £y € ClOt 1, sup ] £, (0] <1, and (T}, T > ¢, such

O,tk

that lkai)lM-i k and ka(t)IM <k for t < T, where x _ is the

solution of (27) arising from initial data fk on [0,t For any

Kl
k> 1,
2
V) TeX (T x) 2 1% (T |y

Tk u Tk
-2 [ ! !xk(u)lMIK(u,s)lMexp f g Pk(s)lMdsdu
0 0 u

T

2 Ty (v k |
Pl Tyl -2 fo fo |K(u,s)],, exp g Jdsdu ;

u
> ak”.
Also,

2
Vit B (gL £) < T )]y
t, qu t
+ 2 fo fo [fk(u)lM[h(u,s)lM exp [ g Ifk(s)[Mdsdu
u

tk u tk
<1+2 f f | K(u,8)| ) exp I g| dsdu
0 /0 u

£2-q,

From (3.5)applied to these inequalities,

2 Tk
(3.6) ak” < (z-a)expf g(Ddt .
t
k
* Since (3.6)must hold for every k, 1lim ka g(t)dt = +o. This proves (i). %;
ko't 5
k »
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To prove (ii) we follow the same argument except that all the t

coincide at some t, > 0. The same chains of inequalities lead us to

this version of (3.06):
T

ak? < (24)expf Kg(t)at.

i

t
This implies that 1im sup f g(1)dt = +o and thus establishes (ii).
-0 0

Remarks. The formulas in (3.3)and (3.4) resemble those describing V

and V in Section 2. In fact, V1 is motivated by the construction

A

there. If K{(t,T) = Bl(t-t) and A(t) then g(t) = g

1’ 1

and the final term in (3.3) takes the form

L C -840
2 [ e 6-metifx (i
-t/-t
after a change of variables. It may be rewritten as

o ,0 T
J_t f_txt(e)Pl(e,n)xt(n)dndﬁ

with P (g, = -MBj@-me®1° for -t<n<8<0 and P (n8) = PO,

Then

9P, (9,n) aPl(G,n)

30 + - 3N = '81P1(9,n)

so that V1 fits the term-by-term comparison scheme used before; the

kernel corresponding to N of Section 2 vanishes.

The simple appearance of V1 and Vl does not even depend on the

linearity of (3.1) However, we have not as yet thoroughly exploited this.
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Functionals similar to V, appear in Miller [12] for the case of a scalar
equation.

The functional vV, may be useful in analyzing equations whose kernels

do not decay exponentially, provided the equation can be viewed as a
perturbation of a suitably stable ordinary differential equation. The

following example illustrates this. Consider (3.1) where n = 2,

[k(t, )| < Kk min(1,(e-1)7%), and

Ay = |71 PE
0 -1

where |B(t)] 5_2—Bofqrsome fixed -BO > 0. We apply Theorem 3.l with

M=1I. Then g(t) = -2 + |B(t)| 5.-80. Moreover,

t ru t
2 f f }K(u,s)| exp f - 2+ |B(Y)]dT )dsdu
0‘0 u

t -Bo(t-u) u
<2 J e f |X(u,s)|ds } du
0 0

t -B,(t-u) 1 3
< 4k e du < 4k B, °, ;
0 0 - 00
and the equation is uniformly stable if kg < BO.
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